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Abstract: The inverted pendulum, a popular mechatronic application, is considered as a special class of 

unstable, non-linear, multivariable and complex mechatronic systems with two degrees of freedom and a single 

control input. This system is considered as a keen area of interest for researchers in the field of stabilization, 

control engineering and robotics. In this paper, a mechatronic approach to design a controller for an inverted 

pendulum is presented through a Bong Graph Method. First, a non-linear dynamic model of the inverted 

pendulum is developed by means of the Bond Graph Approach. Second, the proposed control law is derived 

from the Inverse Bond Graph Model of the inverted pendulum using the Bicausality concept. The robustness and 

effectiveness of the proposed control is verified and simulation results are conducted so as to confirm the 

validity of the proposed technique. Hands-on experience is carried out by means of the 20-sim software package 

(a demo version is freely available on the Internet). 
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I. Introduction 
Mechatronic design requires that a mechanical system and its control system be designed as an integrated 

system [1,2]. In order to make proper choices early in the design stage, tools that support modelling and 

simulation of physical systems are required - together with the controllers - with parameters which are directly 

related to the real-world system. The inverted pendulum is a popular mechatronic application that exists in many 

different forms. The common thread among these systems is their goal: to balance a link (that has its center of 

mass above its pivot point) on end using feedback control. This can be done either by applying a torque at the 

pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of 

a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the 

pendulum. The inverted pendulum has been employed in various devices and trying to balance an inverted 

pendulum presents a unique engineering problem for researchers. The inverted pendulum was a central 

component in the design of several early Seismometers due to its inherent instability resulting in a measurable 

response to any disturbance. The inverted pendulum model has been used in some forms of personal 

transportation devices [3,4,5]. Two-wheeled wheel chairs and other two-wheeled motorized vehicles can offer 

enhanced mobility for the driver. 

A vast range of contributions exists for the control of different types of inverted pendulums. In [6] a 

stabilization and control of inverted pendulum on cart moving on an inclined surface using PID and fuzzy 

controllers was studied. The PID gains were obtained using trial and error method. The results showed better 

performance of PID controller over the other controller (the fuzzy one). The authors of [7] developed a hybrid 

fuzzy control strategy for two-wheeled robotic vehicle having a movable payload. The system was designed to 

move in different environments and terrains. The Euler-Lagrange approach was used for deriving a model of the 

system. The paper [8] discussed the implementation of an event-based control structure for the classical rotary 

inverted pendulum, using a real shared communication medium to close the loop. The objective was to reduce 

the amount of information exchanged between the controller and the plant without a significant loss of control 

performance. The results show how the threshold-based communication can be easily used to significantly 

reduce the consumed bandwidth; and the behavior of the system was almost the same as the one with 

conventional control. In [9] a sliding-mode control for tracking control and stabilization of X–Z inverted 

pendulum was applied. Its performance was compared with that of the PID control. Simulation results feature 

that the design scheme of sliding-mode control is more efficient for the stabilization and tracking control of the 

X–Z inverted pendulum. Authors of [10] presented a fractional PI-state feedback controller design for 

controlling and stabilization of an inverted pendulum-cart system. It was based upon choosing n-1 poles of an 
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integer polynomial and decomposing a fractional polynomial into a first order. The proposed control efficiency 

is examined through experiments. In [11] a constructive method to design a controller for an inverted pendulum 

characterized by a time-delayed balance control was presented. The control design was based on a nonlinear 

state predictor scheme. The contribution [12] reported a first attempt on analyzing the effect of time delay on the 

stability of a planar pendulum, where the author used the PMD (Proportional Minus Delay controller) technique 

to provide sufficient conditions for the stability of the inverted pendulum when the control input action is 

delayed. Authors of [13] developed a control strategy for the stabilization of a flywheel inverted pendulum with 

minimum energy. The controller was designed basically in two control loops. First, an output stabilizer PID 

controller is obtained following a traditional control design. The appearance of internal instability requirements 

for a second control loop, was also designed by a simple control design method. The work [14] developed an 

adaptive output recurrent cerebellar-model-articulation-controller (AORCMAC) for angle and position control 

of such a wheeled inverted pendulum without model information.  

Our paper introduces a mechatronic modeling and control of an inverted pendulum. Initially, the Bond 

Graph tool is used to model the inverted pendulum. Then, we discuss the theoretical development related to the 

control of the inverted pendulum using the concept of Bond Graph Bicausality. This method can represent the 

whole system (model and control) and features some properties that can be directly applied to the model. 

Finally, the performance of the system is compared with a conventional PID controller to validate it. A Bond 

Graph [15,16,17] is a graphical representation of a physical dynamic system. It is similar to the better known 

block diagram and signal-flow graph, with the major difference that the arcs in bond graphs represent bi-

directional exchange of physical energy, while those in block diagrams and signal-flow graphs represent 

unidirectional flow of information. Also, bond graphs are multi-energy domain (e.g. mechanical, electrical, 

hydraulic, etc.). This means that a Bond Graph can incorporate multiple domains seamlessly. 

The Bond Graph is composed of the ‖bonds‖ which link together ‖single port‖, ‖double port‖ and ‖multi-

port‖ elements (R, I, C, TF and GY) [15,16,17]. Each bond represents the instantaneous flow of energy (dE(t)/dt) 

or power P(t). A pair of variables called ―power variables‖ whose product is the instantaneous power of the 

bond denotes the flow of energy in each bond. Each domain’s power variables are broken into two types: ―effort 

e(t)‖ and ―flow f(t)‖. Effort multiplied by flow produces power, thus the term power variables. Every domain has 

a pair of power variables with corresponding effort and flow variables. Causality - a bond graph must determine 

which of the two power signals for the subsystem is entering, and which in turn dependent variable, thus acting 

on the subsystem. Causality is referred by perpendicular to the detention site where the flow enters the 

subsystem variable effort.  Between the building elements of bond graphs which in practice are sufficient, and 

that we classify according to the number of bonds are one-port, two-port and multiport.  

One-ports are elements that exchange energy in the system only via one link. This group includes:   

 Source of effort "SE". 

 Source of flow "SF". 

 One port C element (Capacitor). 

 One port I element (Inductor). 

 One port R element (Resistor). 

Source of effort - the ideal source type of effort is maintained on a constant effort level. The flow f is 

given by connected load and for ideal cases immediately affect the value of effort is not influenced. Source of 

flow - the flow is maintained either at a constant level or as a function of time. The effort is intended load 

applied and, ideally, does not affect the instantaneous flow value. 

For non-ideal effort and flow sources this are not so (Fig. 1): 

Two-ports are elements of the system which can exchange energy via two bonds. Thus, two-ports retain 

power, it is supposed that the product of effort and flow at the exit is equal to the product of effort and flow at 

the inlet. There are two basic types of two-ports: 

 Transformer "TF". 

 Gyrator "GY". 

One-ports are attached to two-ports in the bond graph by connecting nodes. The power is branched in the 

nodes. There are two types of nodes: 

Fig.1 Symbolic sign of flow and effort sources 
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 1 – junction. 

 0 – junction. 

 

The 1 – junction for all the power bonds that lead to the same node flow (f) and node describes the 

balance of effort (e).  0 - junction is the power of all bonds that lead to the same node of effort (e) and node 

describes the balance of the flow (f). The main advantages of the Bond Graph tool for modeling purposes are 

summarized through few keywords:  

1. Modeling: the Bond Graph is a unified representation language, which explicitly highlights the power flows, 

makes possible the energetic study,  simplifies models building for multi-disciplinary systems, explicitly 

shows up the cause - effect relations (causality) and leads to a systematic writing of mathematical models 

(linear or nonlinear associated). 

2. Identification: identification of unknown parameters, but knowledge of the associated physical phenomena 

and mastering physical meaning of the obtained model. 

3. Analysis: Putting to the fore the causality problems, and therefore the numerical problems, model dynamic 

estimation and identification of the slow and fast variables. 

4. Control: Design of control laws from simplified models. 

5. Simulation: Specific software (20-Sim) 

 

In this contribution, the Bond Graph is used to model the inverted pendulum and the control law is 

obtained by means of bicausality concept [18]. 

 

II. Bond Graph Model Of The Inverted Pendulum 
The inverted pendulum system depicted in Fig. 2 consists of a link mounted on a cart by means of a pivot 

in such a way that the pole can freely swing in the (xz) plane. 

The following variables and parameters have been chosen to describe the system:  

 x is the position of the cart 

 (xp,yp) denote the position of the pendulum 

 θ the angular position of the pendulum 

 M is the mass of the cart 

 m is the mass of the pendulum 

 l is half the length of the pendulum, i.e., the distance from the pivot (point A) to the center of mass of the 

pendulum. 

 I is the pendulum’s moment of inertia 

 b1 is the friction between the car and the ground 

 b2 is the friction in the pivot 

 g is the gravity acceleration 

 F(t) is the horizontal force being applied to the cart to swing the pendulum until it reaches the desired 

unstable position.  

 

The cart-pole system has two equilibrium points, one of which is known as the stable vertically 

downward position where θ = π and the other one being the unstable vertically upward position where θ = 0. 

The relationships between velocities are: 

𝑥 𝑝 = 𝑥 + 𝑙𝜃 𝑐𝑜𝑠𝜃      (1) 

𝑦 𝑝 = −𝑙𝜃 𝑠𝑖𝑛𝜃               (2) 

Fig.2 Schematic representation of an inverted pendulum on a cart. 
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From Fig. 1 and Eq. (1) and (2) we can directly build the bond graph model sketched in Fig. 3. 

 

The masses of the pendulum and the car and the pendulum’s inertia are represented by I-element. The 

friction in the pivot and between the car and the ground are modeled by R-element. The velocities in the system 

are represented by 1-jonction and the kinematic relations between velocities are modeled using MTF-element 

and 0-jonction. The boundary condition on the top of the pendulum (point B) is represented by effort source (Se-

element) equal to zero (FBx = FBy = 0) because the top of the pendulum is free. The boundary condition on the 

bottom of the pendulum is represented by flow source (Sf-element) equal to zero in the y-direction because the 

car does not move in the y-direction. The horizontal force F(t) applied to the cart is modeled by a modulated 

effort source (MSe-element), the modulated element being used because the applied force is variable. 

 

III. Control Of Inverted Pendulum Using The Inverse Bond Graph Model. 
From the bond graph model, it can be seen that the pendulum angle is influenced by the horizontal force  

action F(t). Therefor the control strategy presented in this paper adjusts the horizontal force F(t) to set the 

pendulum at its equilibrium position. In order to control the system, it is necessary to generate the reference 

horizontal force. To this aim, a specific algorithm is designed, based upon the Inverse Bond Graph (IBG) [18] 

and the performance of the system is compared with a conventional PID controller to validate it. The inverse 

model corresponds to a re-organization of the equations where the input and output roles are exchanged: inputs 

become outputs and vice versa [19]. The inverse model is created by imposing both effort and flow information 

from the sensor and receiving both at the source. This procedure cannot be done through normal causality. 

That’s why the notion of bicausality [20, 21] is introduced. This is graphically represented by decomposing the 

causal trait into two half-causal traits. 

For the inverse bond graph formulation, it is necessary to change the flow detectors (Df:θ(t)), which will 

be placed in bond 27 (Fig. 3) of the original bond graph, by a source named SS, (which impose zero effort but 

non-zero flow to the inverse model). Then the bicausality propagates (in only one line of power transfer) from 

this source (SS:θ(t)) to the input effort source (Se: F(t)) of the original bond graph which becomes a detector 

(i.e. SS:F(t)) in the inverse bond graph. Direct bond graph model analysis (Fig. 3) indicates that there is a power 

line and a causal path between the input variable F(t) and the output variableθ(t). Therefore, the model is 

structurally invertible [21] compared to these couples of variables F(t) andθ(t). The controller objective is to 

calculate the horizontal force F(t) required to set the pendulum at its equilibrium position.  It is then appropriate 

to inverse the bond graph model of Fig. 2 relatively to the couples of variables F(t) andθ(t).   

The Inverse Bond Graph model of the system is given in Fig. 4. From this model we can derive a block 

diagram model, which is shown in Fig. 5, to control the pendulum angle in an open loop, the closed loop control 

Fig.3 Bond Graph Model of an inverted pendulum. 

27 
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is done by fixing the error dynamics. The proposed gains of the error dynamics are PI-controllers; there estimate 

values are considered in the control law. 

 

 

IV. Results And Discussion 
In order to verify the robustness of the proposed control law, a simulation is carried-out on 20-Sim 

framework, considering the following system parameters M=0.2 kg, m=0.1 kg, I=0.006 kg.m
2
, b1=0.005 kg.s

-1
, 

b2=0.005 kg.m
2
.s

-1
andl=0.1 m. 

The initial condition for the simulation is chosen as 0 for all state variables except the angle of the 

pendulum, whose initial conditions are: π/6, π/5, π/4, π/3.  

To show the efficiency of proposed method in this paper, the Inverse Bond Graph control design is 

compared with the PID controller that are proposed in [22]. The structure of the control method with Inverse 

Bond Graph control and PID control is given in Fig. 6 and 7 respectively. The PID parameters are designed as 

follows: 

𝑃𝐼𝐷𝜃 :  P =  25,   I =  15,   D =  3. 
𝑃𝐼𝐷𝑥 :  P =  −1.5,   I =  −0.5,   D =  −0.2. 

The simulation results are represented in Fig .8, which shows the pendulum angle and car position for 4 

initial conditions of pendulum angle. The results showed that both IBG and PID controllers can maintain the 

stability of the pendulum in its unstable equilibrium position for all initial conditions. It is clear that with the 

IBG controller, the pendulum vibrations (for both angle and position) are successfully reduced compared with 

PID controller. 

Fig. 4 Inverse Bond Graph Model of an inverted pendulum. 

                 Fig. 5 Inverse Bond Graph Model control law block diagram 
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Comparing simulation results of Fig. 8, we can find that stabilization of the inverted pendulum with the 

IBG controller has better performance than that of with PID control. The IBG controller not only has faster 

response speed, but also has less stable error. 

 

 

 

 

V. Conclusion 
In this paper, we have proposed a mechatronic approach to design a controller for an inverted pendulum 

through a Bong Graph Method. First, the model of the inverted pendulum is developed by means of the Bond 

Graph Approach. Then, the proposed control law is derived from the Inverse Bond Graph Model of the inverted 

pendulum using the Bicausality concept. The proposed technique was compared with a PID control strategy, the 

simulation results showed better performance of Inverse Bond Graph controller over PID controller.  

 

Fig.5 Control structure of IBG. 

Fig.4 Control structure of PID. 
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Fig.6 Simulation response of the cart position and pendulum angle for 
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